Speaker Recognition by Combining MFCC and Phase Information in Noisy Conditions
نویسندگان
چکیده
In this paper, we investigate the effectiveness of phase for speaker recognition in noisy conditions and combine the phase information with mel-frequency cepstral coefficients (MFCCs). To date, almost speaker recognition methods are based on MFCCs even in noisy conditions. For MFCCs which dominantly capture vocal tract information, only the magnitude of the Fourier Transform of time-domain speech frames is used and phase information has been ignored. High complement of the phase information and MFCCs is expected because the phase information includes rich voice source information. Furthermore, some researches have reported that phase based feature was robust to noise. In our previous study, a phase information extraction method that normalizes the change variation in the phase depending on the clipping position of the input speech was proposed, and the performance of the combination of the phase information and MFCCs was remarkably better than that of MFCCs. In this paper, we evaluate the robustness of the proposed phase information for speaker identification in noisy conditions. Spectral subtraction, a method skipping frames with low energy/Signal-to-Noise (SN) and noisy speech training models are used to analyze the effect of the phase information and MFCCs in noisy conditions. The NTT database and the JNAS (Japanese Newspaper Article Sentences) database added with stationary/non-stationary noise were used to evaluate our proposed method. MFCCs outperformed the phase information for clean speech. On the other hand, the degradation of the phase information was significantly smaller than that of MFCCs for noisy speech. The individual result of the phase information was even better than that of MFCCs in many cases by clean speech training models. By deleting unreliable frames (frames having low energy/SN), the speaker identification performance was improved significantly. By integrating the phase information with MFCCs, the speaker identification error reduction rate was about 30%–60% compared with the standard MFCCbased method. key words: speaker identification, phase information, MFCC, noisy environment, GMM
منابع مشابه
Speaker recognition by combining MFCC and phase information
In conventional speaker recognition method based on MFCC, the phase information has been ignored. In this paper, we proposed a method that integrates the phase information on a speaker recognition method. The speaker identification experiments were performed using NTT database which consists of sentences uttered at normal speed mode by 35 Japanese speakers (22 males and 13 females) on five sess...
متن کاملHigh Improvement of Speaker Identification and Verification by Combining Mfcc and Phase Information
In conventional speaker recognition methods based on MFCC, phase information has been ignored. We proposed a method that integrated the phase information with MFCC on a speaker identification method, and a preliminary experiment was performed. In this paper, we propose a new modified feature parameter (that is, coordidates on an unit circle) obtained from the original phase information, and eva...
متن کاملSpeech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions
Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...
متن کاملSpeaker Identification by Combining Various Vocal Tract and Vocal Source Features
Previously, we proposed a speaker recognition system using a combination of MFCC-based vocal tract feature and phase information which includes rich vocal source information. In this paper, we investigate the efficiency of combination of various vocal tract features (MFCC and LPCC) and vocal source features (phase and LPC residual) for normal-duration and short-duration utterance. The Japanese ...
متن کاملتشخیص لهجه های زبان فارسی از روی سیگنال گفتار با استفاده از روش های استخراج ویژگی کارآمد و ترکیب طبقه بندها
Speech recognition has achieved great improvements recently. However, robustness is still one of the big problems, e.g. performance of recognition fluctuates sharply depending on the speaker, especially when the speaker has strong accent and difference Accents dramatically decrease the accuracy of an ASR system. In this paper we apply three new methods of feature extraction including Spectral C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 93-D شماره
صفحات -
تاریخ انتشار 2010